- Вертикальные углы
- Вертикальные углы. Свойства вертикальных углов
- Свойства вертикальных углов
- Задачи и решения
- Вертикальные углы
- Содержание
- Теорема о вертикальных углах
- Алгебраическое решение вертикальных углов
- См. также
- Литература
- Ссылки
- Полезное
- Смотреть что такое «Вертикальные углы» в других словарях:
- Какие углы называются вертикальными: определение и свойства
- Вертикальные углы — что это такое в геометрии, определение
- Свойства вертикальных углов
- Равны или нет, доказательство теоремы
- Примеры решения задач
- Задача 1
- Задача 2
- Геометрия. 7 класс
Вертикальные углы
Какие углы вертикальные? Каким свойством обладают вертикальные углы?
Рассмотрим определение вертикальных углов и их свойство, а также применим свойство вертикальных углов для решения задач.
Определение.
Вертикальные углы — это пары углов с общей вершиной, которые образованы при пересечении двух прямых так, что стороны одного угла являются продолжением сторон другого.
При пересечении двух прямых образуется две пары вертикальных углов:
∠1 и ∠2 — вертикальные углы
∠3 и ∠4 — вертикальные углы
Свойство вертикальных углов.
Вертикальные углы равны.
Таким образом, при пересечении двух прямых образуется две пары равных межу собой углов.
1) Сумма вертикальных углов равна 140º. Найти эти углы.
Так как вертикальные углы равны, а в условии сказано, что их сумма равна 140º, то каждый из них равен по 140:2=70º.
2) Сумма двух углов, образованных при пересечении двух прямых, равна 100º. Найти эти углы.
При пересечении двух прямых образуются углы двух видов — вертикальные и смежные.
Так как сумма смежных углов равна 180º, а по условию, сумма углов равна 100º, то эти углы — вертикальные.
А так как вертикальные углы равны, то каждый из них равен по 100:2=50º.
Вертикальные углы во многих задачах — важный элемент при доказательстве равенства треугольников и подобия треугольников.
Вертикальные углы. Свойства вертикальных углов
Определение 1. Вертикальными углами называются два угла, у которых стороны одного угла являются продолжениями сторон другого угла.
На Рис.1 углы AOB и COD вертикальные. Вертикальные также углы AOD и BOC.
Свойства вертикальных углов
1. Вертикальные углы равны.
2. Две пересекающие прямые образуют две пары вертикальных углов.
Доказательство пункта 1. Поскольку 1, 3 и 2, 3 смежные углы, то имеем
, |
, |
Следовательно . Аналогично доказывается, что .
Задачи и решения
Задание 1. Угол 1 равен 32°. Найти углы 2, 3, 4 (Рис.2).
Решение. Так как углы 1 и 2 вертикальны, то . Углы 1 и 4 смежные. Следовательно . Тогда
. |
Углы 3 и 4 вертикальные. Тогда
Ответ. .
Задание 2. При пересечении двух прямых образовались четыре угла. Сумма двух углов равна 220°. Найти все углы.
Ответ. .
Вертикальные углы
В геометрии, два угла называются вертикальными, если они созданы пересечением двух прямых и не являются прилегающими. Такие углы имеют общую вершину. Они имеют одинаковую градусную меру и могут рассматриваться как равные.
Содержание
Теорема о вертикальных углах
Алгебраическое решение вертикальных углов
Например, угол A на рисунке — неизвестен. Обозначим A = x. Если два прилегающих угла образуют прямую, то они — смежные. Тогда, градусная мера C = 180 − x. Аналогично, градусная мера D = 180 − x. Углы C и D имеют одинаковую меру, которая равна 180 — x и являются вертикальными. Поскольку, угол B является смежным для обоих углов C и D, для того, чтобы вычислить размер B можно использовать градусную меру любого из них. Используя меру угла C или угла D, найдём градусную меру угла B = 180 — (180 — x) = 180—180 + x = x. Отсюда, оба угла A и B имеют г
См. также
Литература
Ссылки
Полезное
Смотреть что такое «Вертикальные углы» в других словарях:
ВЕРТИКАЛЬНЫЕ УГЛЫ — см. Угол … Большой Энциклопедический словарь
Вертикальные углы — пары углов с общей вершиной, образуемые при пересечении двух прямых так, что стороны одного угла являются продолжением сторон другого. На рис. две пары В. у. Рис. к ст. Вертикальные углы … Большая советская энциклопедия
вертикальные углы — см. Угол. * * * ВЕРТИКАЛЬНЫЕ УГЛЫ ВЕРТИКАЛЬНЫЕ УГЛЫ, см. Угол (см. УГОЛ) … Энциклопедический словарь
ВЕРТИКАЛЬНЫЕ УГЛЫ — см. Угол … Естествознание. Энциклопедический словарь
углы геометрической видимости — Углы, определяющие зону минимального телесного угла, в которой должна быть видна видимая поверхность огня. Эта зона определяется сегментами сферы, центр которой совпадает с исходным центром огня, а экватор параллелен грунту. Эти сегменты… … Справочник технического переводчика
углы геометрической видимости — 2.12 углы геометрической видимости: Углы, определяющие зону минимального телесного угла, в которой должна быть видна видимая поверхность огня. Эта зона определяется сегментами сферы, центр которой совпадает с исходным центром огня, а экватор… … Словарь-справочник терминов нормативно-технической документации
Инсоляционные углы светопроема — горизонтальные и вертикальные углы, в пределах которых на плоскости светопроема возможно поступление прямых солнечных лучей. При расчете инсоляционных углов глубина световых проемов принимается равной расстоянию от наружной плоскости стены до… … Официальная терминология
ГЕОМЕТРИЯ — раздел математики, занимающийся изучением свойств различных фигур (точек, линий, углов, двумерных и трехмерных объектов), их размеров и взаимного расположения. Для удобства преподавания геометрию подразделяют на планиметрию и стереометрию. В… … Энциклопедия Кольера
Угол — У этого термина существуют и другие значения, см. Угол (значения). Угол ∠ Размерность ° Единицы измерения СИ Радиан … Википедия
ГОСТ Р ИСО 12509-2010: Машины землеройные. Осветительные, сигнальные и габаритные огни и светоотражатели — Терминология ГОСТ Р ИСО 12509 2010: Машины землеройные. Осветительные, сигнальные и габаритные огни и светоотражатели оригинал документа: 3.1.5 габаритная ширина (overall width): Расстояние между двумя вертикальными плоскостями объемного… … Словарь-справочник терминов нормативно-технической документации
Какие углы называются вертикальными: определение и свойства
Вертикальные углы — что это такое в геометрии, определение
Вертикальные углы – пара углов с общей вершиной, которые образованы при пересечении двух прямых таким образом, что стороны одного из них являются продолжением сторон другого. Иными словами – они противоположны.
Свойства вертикальных углов
Равны или нет, доказательство теоремы
Особенность вертикальных углов в том, что они абсолютно идентичны.
Убедимся в справедливости этого свойства. Докажем его: на чертеже 1 и 2, 2 и 3, 3 и 4, 4 и 1 являются смежными, 1 и 3, 2 и 4 – вертикальные.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
\(\angle1+\angle2=180^\circ и \angle2+\angle3=180^\circ\)
Отсюда выведем, что:
Уравнение доказало равенство углов 1 и 3.
Примеры решения задач
Задача 1
Дано
Найти: значения \(\angle2, \angle3, \angle4\)
Решение
\(\angle1\) и \(\angle3\) вертикальные. Значит \(\angle1=\angle3=45^\circ.\)
\(\angle1\) и \(\angle4\) смежные. По правилу о смежных углах:
Так как \(\angle4\) и \(\angle2\) вертикальные, то \(\angle4=\angle2=135^\circ.\)
Ответ: величина \(\angle3=45^\circ,\) величина \(\angle2\) и \(\angle4=135^\circ.\)
Задача 2
Дано
Две прямые пересеклись и сформировали четыре угла. Сумма двух из них составляет \(140^\circ.\)
Найти: значения всех углов, образовавшихся при пересечении прямых.
Решение
Так как вертикальные углы равны, то значение каждого из них соответствует:
Оставшиеся углы – смежные к вертикальным и вертикальные по отношению друг к другу. Для того, чтобы их вычислить, выполним следующее действие:
Геометрия. 7 класс
Конспект урока
Смежные и вертикальные углы. Аксиомы и теоремы
Перечень вопросов, рассматриваемых в теме:
Два угла, у которых одна сторона общая, а две другие являются продолжениями друг друга, называются смежными.
Свойства смежных углов:
Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого.
Свойство вертикальных углов: вертикальные углы равны.
Аксиома– положение, принимаемое без доказательств.
Теоретический материал для самостоятельного изучения
Давайте построим развёрнутый угол АОС и проведём в нём луч ОВ. В результате у нас получилось два угла ∠АОВ – острый угол и ∠ВОС– тупой угол. Стороны АО и ОС – продолжают друг друга, ВО– общая сторона. Углы АОВ и ВОС – это смежные углы. На основании этого сформулируем определение смежных углов.
Два угла, у которых одна сторона общая, а две другие являются продолжениями друг друга, называются смежными.
Давайте докажем это свойство.
Укажем ещё одно свойство смежных углов.
Теперь построим две пересекающиеся прямые, АС и BD. Посмотрите, при пересечении прямых у нас получилось четыре угла: ∠АОВ, ∠АОD, ∠CОD, ∠BОC. Из них попарно являются смежными углы: ∠АОВ и ∠АОD, ∠АОD и ∠CОD, ∠CОD и ∠BОC, ∠АОВ и ∠BОC.
Углы, которые не являются смежными:
∠АОВ и ∠CОD; ∠АОD и ∠BОC. Пары этих углов называются вертикальными углами.
Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого.
Свойство вертикальных углов: вертикальные углы равны. Убедимся в справедливости этого свойства, докажем его.
Доказательство. Посмотрим на чертёж: пары углов 1 и 2, 2 и 3, 3 и 4, 4 и 1– смежные углы. Угол 2 одновременно является смежным с углом 1 и с углом 3. По свойству смежных углов
Свойства смежных и вертикальных углов, которые мы сегодня рассмотрели– в геометрии называются теоремами. Правильность утверждения о свойстве той или иной геометрической фигуры устанавливается путём рассуждения. Это рассуждение называется доказательством. А само утверждение, которое доказывается, называется теоремой.
На предыдущих уроках вы познакомились с понятием аксиомы.
В чём же различие между аксиомой и теоремой? Ответ на этот вопрос таков: аксиома – положение, принимаемое без доказательств.
Разбор решения заданий тренировочного модуля
№1. Тип задания: ввод с клавиатуры пропущенных элементов в тексте.
Используя чертёж, найдите угол ∠ВОК.
№2. Тип задания: единичный / множественный выбор.
Используя чертёж, найдите угол ∠AOD.
№3. Тип задания: выделение цветом.
Выделите верный ответ из списка:
60 0 ; 30 0 ; 75 0 ; 90 0