Что значит взаимно перпендикулярны

Что значит взаимно перпендикулярны

Углы бывают острые, прямые и тупые.

6058c4fcfc0691203a35d0ed vwmHagj5rNw%20(1)

Угол с градусной мерой 90° называется прямым. Если угол меньше 90°, его называют острым, а если больше 90° — тупым. Угол, равный 180° (то есть образующий прямую линию), называют развёрнутым.

60b7631e33792aeb8f8f2962 podtyani shkolnyi predmet

Два угла с одной общей стороной называются смежными.

6058c55200e05d1627824d68 Xq74ZwqOf90%20(1)

На рисунке луч ОС делит развёрнутый AOB =180° на две части, образуя тупой 1 и острый 2.

Поэтому если один из смежных углов прямой, то второй также оказывается прямым: 180° – 90° = 90°

При пересечении двух прямых образуются четыре угла:

6058c5df1d9165030f032cd5 dekbJuGkt64%20(1)

Обе стороны 1 также являются сторонами 3, а стороны 2 продолжают стороны 4. Такие углы называют вертикальными.

∡1 и ∡2 — смежные, как и ∡1 и ∡4. Следовательно:
∡1 + ∡2 = 180°
∡1 + ∡4 = 180°
∡2 = ∡4

То же справедливо и для ∡1 и ∡3.

Прямые, пересекающиеся под прямым углом, называются перпендикулярными.

6058c6490752ed702dfd0fc5 Ld1jbsP2FJU%20(1)

1 равен 90°, остальные углы оказываются для него либо смежными, либо вертикальными, а значит, тоже равными 90°.

Перпендикулярность прямых принято обозначать так: a⟂b

Изучайте математику вместе с преподавателями домашней онлайн-школы «Фоксфорда»! По промокоду GEOM72021 вы получите неделю бесплатного доступа к курсу геометрии 7 класса, в котором изучаются перпендикулярные прямые!

Теорема о перпендикулярных прямых

Через каждую точку прямой можно провести перпендикулярную ей прямую, притом только одну.

Построим доказательство теоремы о перпендикулярных прямых «от противного», то есть для начала предположим, что утверждение неверно.

Возьмём прямую a, отметим на ней точки О и B. От луча OB отложим ∡BOA = 90°. Таким образом, отрезок OA будет находиться на прямой, перпендикулярной а.

6058c6cd29492821d63c994e bi4DBzaleRM%20(1)

Теперь предположим, что в той же полуплоскости существует другой перпендикуляр к а, проходящий через О. Назовём его OK. ∡BOK и ∡BOA, равны 90° и лежат в одной полуплоскости относительно луча OB. Но от луча OB в данной полуплоскости можно отложить только один прямой угол. Поэтому другой прямой, проходящей через О и перпендикулярной a, не существует. Теорема доказана.

Свойство перпендикулярных прямых

Две прямые, перпендикулярные третьей, не пересекаются.

6058ce22f3097484dbb796b8 mObsJ3rNvQY%20(1)

Пусть a⟂b и a⟂c. b и с не пересекаются, ведь если бы существовала точка их пересечения, значит, через неё проходили бы две прямые, перпендикулярные a, что невозможно согласно теореме о перпендикулярных прямых. Следовательно, b||с.

5996dbd8ab717100012bc803 shape copy 9

5996dbd8ab717100012bc803 shape copy 9

5996dbd8ab717100012bc803 shape copy 9

615457c63eba5932bf2b77d0 Vector

61545185aadddd79c11c9568 mailbox img

У нас вы сможете учиться в удобном темпе, делать упор на любимые предметы и общаться со сверстниками по всему миру.

6152f4560deb49c32c16e5a3 demo img6152f454acc4017a835befaf demo img mobПопробовать бесплатно

615457c63eba5932bf2b77d0 Vector

61545185aadddd79c11c9568 mailbox img

Интересное по рубрике

Найдите необходимую статью по тегам

60b70fca15fd827e87e09dfe Frame%2030

Подпишитесь на нашу рассылку

Мы в инстаграм

Домашняя онлайн-школа
Помогаем ученикам 5–11 классов получать качественные знания в любой точке мира, совмещать учёбу со спортом и творчеством

5e4bdc9fdec349e368cbfd89 insta minПосмотреть

Рекомендуем прочитать

Реальный опыт семейного обучения

5eba89001c70e820dcc4109b instagram green

5eba88ff99d623b624496d0f fb green

5eba8901ea94d28905157897 telegram green

5eba88ff05cb7dcaaa7e1f5a footer phone

Звонок по России бесплатный

5eba88ffa1c16c471e527bf7 footer email

5eba88ff5c302433b8acee63 footer geo

Посмотреть на карте

Если вы не нашли ответ на свой вопрос на нашем сайте, включая раздел «Вопросы и ответы», закажите обратный звонок. Мы скоро свяжемся с вами.

Источник

perpendikulyarnye pryamye

Основные свойства

При рассмотрении того, какие прямые называют перпендикулярными, нужно уделить внимание свойствам. Они выглядят следующим образом:

Для обозначения перпендикуляра применяется знак «⊥». В подобном случае угол составляет 90°. На чертеже пересечение обозначается своеобразным квадратом, которые рисуется от двух пересекающихся линий.

Доказательство взаимного расположения

Рассматриваемый термин получил широкое распространение, он фигурирует практически в каждой геометрической задаче. В некоторых случаях о взаимном расположении известно, в других это нужно доказать. Задача доказательства заключается в определении прямого угла между двумя прямыми или плоскостями. Необходимое и достаточное условие перпендикулярности заключается в теореме:

Для определения расположения плоскостей или отрезков относительно друг друга следует провести геометрическое построение. Проходить отрезки должны в одной точке.

Определение перпендикулярности прямой и плоскости

Рассматривая определение перпендикулярных прямых следует учитывать, что подобное свойство применимо к плоскости. Основной признак заключается в перпендикулярности отрезка к любому другому, который находится в плоскости. Перпендикулярность прямых в пространстве указывается определенным знаком.

Доказать перпендикулярность можно проведя геометрические построения. Признаки расположения плоскости и прямой под углом 90° заключаются в следующем:

opredelenie perpendikulyarnyh

Отрезки могут быть также параллельными. В этом случае нет точки, в которой будут они пересекаться.

Построение перпендикуляра

Выдержать угловой коэффициент можно различным образом. В большинстве случаев для этого нужно иметь при себе циркуль. Построить перпендикуляр можно следующим образом:

postroenie perpendikulyara

Существенно упростить задачу можно путем применения специального чертежного инструмента, к примеру, любого прямоугольного треугольника. Он может называться угольником, основной его признак заключается в наличии двух перпендикулярных плоскостей. Построение проводится следующим образом:

Читайте также:  Что делать с трисс ведьмак 3

В геометрии чаще всего применяется именно второй способ. Однако первый урок позволяет начертить два взаимно перпендикулярных отрезка с высокой точностью. Недостаток применения циркуля заключается в наличии вспомогательных линий, которые стереть сложно. Написать о взаимном расположении линий можно в описательной записке.

Трехмерное пространство

В начертательной геометрии линии всегда находятся в двухмерном пространстве. В специальных программах можно начертить отрезки в трехмерном пространстве. Подобное взаимное расположение может выглядеть следующим образом:

kakie pryamye nazyvayut

В жизни подобное расположение прямых встречается крайне часто. Проверить угол можно при применении специальных инструментов.

Четырехмерная система координат и лемма

Некоторые программы работают с четырехмерным пространством. Взаимное расположение плоскостей под прямым углом в этом случае имеет два смысла: они могут быть перпендикулярны в трехмерном смысле при образовании двугранного угла 90°.

Рассматриваться взаимное расположение плоскостей может и в 4-мерном смысле. Условия выглядят следующим образом:

Условия четырехмерного пространства определяют то, что через одну точку можно провести 6 взаимно перпендикулярных плоскостей. Определять их взаимное расположение можно несколькими различными способами.

Лемма, касающаяся перпендикулярности, связана с определением параллельности. Если одна из параллельных линий расположена под прямым углом относительно плоскости или отрезка, то вторая также перпендикулярна. Ответ на многие задачи связан с доказательством леммы:

vzaimno perpendikulyarnye

При соблюдении условий полученный угол будет являться прямым. С учетом проведенных построений можно сформулировать определение перпендикулярности параллельных отрезков.

Применение термина

perpendikulyarnost pryamyh

Как ранее было отмечено, встречается большое количество примеров применения рассматриваемого термина. На основе теоремы и доказательства были созданы различные формулы, позволяющие определить протяженность одного из сторон геометрической фигуры.

В средних и старших классах встречается большое количество задач, связанных с определением угла и протяженности сторон построенной фигуры. В некоторых случаях проводится построение диагонали, которая делит 90° на две равные части.

В жизни взаимное перпендикулярное расположение плоскостей встречается крайне часто. Примером служат несущие элементы различных сооружений. Подобное расположение позволяет правильно распределить оказываемую нагрузку. Править наклон можно путем применения специальных измерительных инструментов.

Многие геометрические фигуры построены на основе перпендикулярного расположения отрезков. Наиболее распространен параллелограмм или квадрат, треугольник. За счет выдерживания правильного угла обеспечивается также взаимное параллельное расположение сторон.

Приведенная выше информация указывает на то, что определение угла, под которым расположены плоскости, проводится в самых различных сферах. Инженеры и строители должны с высокой точностью контролировать этот показатель.

Источник

Перпендикулярные прямые, условие перпендикулярности прямых

В статье рассматривается вопрос о перпендикулярных прямых на плоскости и трехмерном пространстве. Определение перпендикулярных прямых и их обозначения с приведенными примерами подробно разберем. Рассмотрим условия применения необходимого и достаточного условия перпендикулярности двух прямых и подробно рассмотрим на примере.

Перпендикулярные прямые – основные сведения

Угол между пересекающимися прямыми в пространстве может быть прямым. Тогда говорят, что данные прямые перпендикулярные. Когда угол между скрещивающимися прямыми прямой, тогда прямые также являются перпендикулярными. Отсюда следует, что перпендикулярные прямые на плоскости пересекающиеся, а перпендикулярные прямые пространства могут быть пересекающимися и скрещивающимися.

То есть понятия «прямые a и b перпендикулярны» и «прямые b и a перпендикулярны» считаются равноправными. Отсюда и взялось понятие взаимно перпендикулярные прямые. Обобщив вышесказанное, рассмотрим определение.

Две прямые называют перпендикулярными, если угол при их пересечении дает 90 градусов.

image004

Перпендикулярность прямых – условия перпендикулярности

Свойства перпендикулярности необходимо знать, так как большинство задач сводится к его проверке для последующего решения. Бывают случаи, когда о перпендикулярности идет речь еще в условии задания или когда необходимо пользоваться доказательством. Для того, чтобы доказать перпендикулярность достаточно, чтобы угол между прямыми был прямым.

Для того, чтобы определить их перпендикулярность при известных уравнениях прямоугольной системы координат, необходимо применить необходимое и достаточное условие перпендикулярности прямых. Рассмотрим формулировку.

Само доказательство основывается на определении направляющего вектора прямой и на определении перпендикулярности прямых.

Очевидно, что необходимое и достаточное условие выполнимо, значит, А В и А С перпендикулярны.

Ответ: прямые перпендикулярны.

Решение

Результат произведения не равен нулю, можно сделать вывод, что векторы не перпендикулярны, значит и прямые также не перпендикулярны.

Ответ: прямые не перпендикулярны.

Векторы перпендикулярны, так как произведение равно нулю. Необходимое и достаточное условие выполнено, значит прямые также перпендикулярны.

Ответ: прямые перпендикулярны.

Проверка перпендикулярности может проводится, исходя из других необходимых и достаточных условий перпендикулярности.

Необходимое и достаточное условие было выполнено.

Ответ: прямые перпендикулярны.

Ответ: заданные прямые перпендикулярны.

Имеется еще одно условие, используемое для определения перпендикулярности прямых на плоскости.

Для перпендикулярности прямых a и b на плоскости необходимым и достаточным условием является коллинеарность направляющего вектора одной из прямых с нормальным вектором второй прямой.

Читайте также:  Что за номер 8968 какой регион и оператор сотовой связи регион

Условие применимо, когда есть возможность нахождения направляющего вектора одной прямой и координат нормального вектора другой. Иначе говоря, одна прямая задается каноническим или параметрическим уравнением, а другая общим уравнением прямой, уравнением в отрезках или уравнением прямой с угловым коэффициентом.

Источник

Перпендикулярные прямые — основные свойства, признаки и правила построения

В геометрии распространено понятие прямых. Они обозначаются двумя большими латинскими буквами или одной маленькой. При построении линии могут пересекаться и иметь только одну общую точку. Взаимно перпендикулярные прямые находятся относительно друг друга под углом 90°. Построение проводится при применении специальных инструментов.

6c8ffe3ddca45363e776add0e3acc51f

Основные свойства

При рассмотрении того, какие прямые называют перпендикулярными, нужно уделить внимание свойствам. Они выглядят следующим образом:

Для обозначения перпендикуляра применяется знак «⊥». В подобном случае угол составляет 90°. На чертеже пересечение обозначается своеобразным квадратом, которые рисуется от двух пересекающихся линий.

Доказательство взаимного расположения

Рассматриваемый термин получил широкое распространение, он фигурирует практически в каждой геометрической задаче. В некоторых случаях о взаимном расположении известно, в других это нужно доказать. Задача доказательства заключается в определении прямого угла между двумя прямыми или плоскостями. Необходимое и достаточное условие перпендикулярности заключается в теореме:

Для определения расположения плоскостей или отрезков относительно друг друга следует провести геометрическое построение. Проходить отрезки должны в одной точке.

Определение перпендикулярности прямой и плоскости

Рассматривая определение перпендикулярных прямых следует учитывать, что подобное свойство применимо к плоскости. Основной признак заключается в перпендикулярности отрезка к любому другому, который находится в плоскости. Перпендикулярность прямых в пространстве указывается определенным знаком.

Доказать перпендикулярность можно проведя геометрические построения. Признаки расположения плоскости и прямой под углом 90° заключаются в следующем:

d173bdfa3016ff8c3da2ecec5c565928

Отрезки могут быть также параллельными. В этом случае нет точки, в которой будут они пересекаться.

Построение перпендикуляра

Выдержать угловой коэффициент можно различным образом. В большинстве случаев для этого нужно иметь при себе циркуль. Построить перпендикуляр можно следующим образом:

b5a452f5ae6d1f3471ef85f8ac287833

Существенно упростить задачу можно путем применения специального чертежного инструмента, к примеру, любого прямоугольного треугольника. Он может называться угольником, основной его признак заключается в наличии двух перпендикулярных плоскостей. Построение проводится следующим образом:

В геометрии чаще всего применяется именно второй способ. Однако первый урок позволяет начертить два взаимно перпендикулярных отрезка с высокой точностью. Недостаток применения циркуля заключается в наличии вспомогательных линий, которые стереть сложно. Написать о взаимном расположении линий можно в описательной записке.

Трехмерное пространство

В начертательной геометрии линии всегда находятся в двухмерном пространстве. В специальных программах можно начертить отрезки в трехмерном пространстве. Подобное взаимное расположение может выглядеть следующим образом:

faf282d331c53579214ae4148e5462e8

В жизни подобное расположение прямых встречается крайне часто. Проверить угол можно при применении специальных инструментов.

Четырехмерная система координат и лемма

Некоторые программы работают с четырехмерным пространством. Взаимное расположение плоскостей под прямым углом в этом случае имеет два смысла: они могут быть перпендикулярны в трехмерном смысле при образовании двугранного угла 90°.

Рассматриваться взаимное расположение плоскостей может и в 4-мерном смысле. Условия выглядят следующим образом:

Условия четырехмерного пространства определяют то, что через одну точку можно провести 6 взаимно перпендикулярных плоскостей. Определять их взаимное расположение можно несколькими различными способами.

Лемма, касающаяся перпендикулярности, связана с определением параллельности. Если одна из параллельных линий расположена под прямым углом относительно плоскости или отрезка, то вторая также перпендикулярна. Ответ на многие задачи связан с доказательством леммы:

29005a1fbec5b864c973c1df7ccd63ff

При соблюдении условий полученный угол будет являться прямым. С учетом проведенных построений можно сформулировать определение перпендикулярности параллельных отрезков.

Применение термина

ae820e64acc89ce300a94f7b02b28bc8

Как ранее было отмечено, встречается большое количество примеров применения рассматриваемого термина. На основе теоремы и доказательства были созданы различные формулы, позволяющие определить протяженность одного из сторон геометрической фигуры.

В средних и старших классах встречается большое количество задач, связанных с определением угла и протяженности сторон построенной фигуры. В некоторых случаях проводится построение диагонали, которая делит 90° на две равные части.

В жизни взаимное перпендикулярное расположение плоскостей встречается крайне часто. Примером служат несущие элементы различных сооружений. Подобное расположение позволяет правильно распределить оказываемую нагрузку. Править наклон можно путем применения специальных измерительных инструментов.

Многие геометрические фигуры построены на основе перпендикулярного расположения отрезков. Наиболее распространен параллелограмм или квадрат, треугольник. За счет выдерживания правильного угла обеспечивается также взаимное параллельное расположение сторон.

Приведенная выше информация указывает на то, что определение угла, под которым расположены плоскости, проводится в самых различных сферах. Инженеры и строители должны с высокой точностью контролировать этот показатель.

Источник

Читайте также:  Что должно быть включено в оперативный план снегоборьбы для железнодорожной станции

Перпендикулярные прямые

Какие прямые называются перпендикулярными

Если пара пересекающихся прямых составляют угол в 90 градусов, то такие линии имеют название перпендикулярные.

Схематично перпендикулярные линии АС и ВD будут выглядеть таким образом:

d41d8c 1604237241

Обозначение перпендикулярных прямых в геометрии имеет такой вид:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Признак перпендикулярности, какие условия необходимы, чему равен угол

Угол между парой пересекающихся линий в пространстве может быть прямым. В таком случае рассматриваемые прямые будут перпендикулярными.

Если угол, который образовали две скрещивающиеся прямые, будет прямым, то такие линии также будут перпендикулярными. Исходя из данного утверждения, можно заключить, что перпендикуляры на плоскости являются пересекающимися, а перпендикулярные линии в пространстве могут быть пересекающимися и скрещивающимися. Таким образом, выражения «прямые а и b перпендикулярны» и «прямые b и а перпендикулярны» можно считать равноправными. Согласно этому определению, сформулировано понятие взаимно перпендикулярных прямых.

При определении перпендикулярности линий необходимо учитывать их характеристики, которые имеют большое значение в решении задач. Основные признаки:

К примеру, можно изобразить на рисунке прямую PQ и пару линий, которые перпендикулярны ей: АА и ВВ. Необходимо доказать, что заданные прямые не имеют точек пересечения.

d41d8c 1604237271

Подтверждение целесообразно строить с помощью метода «от обратного». Предположив, что прямые будут пересекаться в точке М1, получим какую-то точку М в другой полуплоскости, относительно прямой PQ. Таким образом, две точки пересекают две прямые, что не соответствует аксиоме. Поэтому предположение является неверным, а линии АА и ВВ не имеют точек пересечения:

d41d8c 1604237293

Можно сделать вывод о том, что пара прямых, перпендикулярных третьей, не обладают общими точками пересечения.

Теорема о перпендикулярных прямых, как доказать

Задачи на перпендикулярные прямые, как правило, решают с учетом свойств этих линий. Доказательством перпендикулярности прямых является прямой угол, который они составляют. В том случае, когда требуется определить их перпендикулярность при известных уравнениях прямоугольной системы координат, следует применить необходимое и достаточное условие перпендикулярности линий.

Теорема 1

Для того чтобы прямые a и b являлись перпендикулярными, необходимо и достаточно, чтобы направляющий вектор прямой обладал перпендикулярностью относительно направляющего вектора заданной прямой b.

Подтверждением данной теоремы является определение направляющего вектора прямой и перпендикулярности линий.

Допустим, что имеется прямоугольная декартовая система координат Оху, на которой заданы уравнения для прямой на плоскости, определяющие линии а и b. Направляющие векторы, характерные для данных прямых а и b, можно обозначить, как:

Согласно формуле прямых а и b, необходимым и достаточным условием является перпендикулярность векторов \(\vec\) и \(\vec.\)

Данное утверждение справедливо в том случае, когда скалярное произведение векторов:

Таким образом, необходимое и достаточное условие перпендикулярности линий а и b, которые расположены в прямоугольной системе координат Оху на плоскости, представляет собой следующее выражение:

Данную теорему целесообразно использовать в том случае, когда требуется определить координаты направляющих векторов, либо, когда известны канонические или параметрические уравнения прямых на плоскости заданных линий а и b.

Необходимое и достаточное условие перпендикулярности прямых а и b можно применять в случае трехмерного пространства.

В данном отношении запись будет иметь такой вид:

являются направляющими векторами прямых а и b.

Теорема 2

Линии а и b на плоскости будут перпендикулярны, если нормальный вектор прямой а и вектор прямой b взаимно перпендикулярны. Данное условие считается необходимым и достаточным.

Доказательство этой теоремы заключается в применении рассматриваемого условия в том случае, когда уравнения прямых дают быстрое нахождение координат нормальных векторов заданных прямых. Таким образом, имея общее уравнение прямой вида: \( A_+B_+C=0\)

а также уравнение прямой в отрезках вида:

и уравнение прямой с угловым коэффициентом вида y = kx + b, координаты векторов можно определить.

В том случае, когда линия а на плоскости определена с помощью уравнения с угловым коэффициентом:

и прямая b имеет вид:

тогда координаты нормальных векторов будут следующие:

Условие перпендикулярности соответствует выражению:

Теорема 3

Прямые а и b перпендикулярны на плоскости при необходимом и достаточном условии, при котором один из направляющих векторов этих линий будет коллинеарным нормальному вектору второй прямой.

Данное условие действует при наличии возможности определения направляющего вектора одной прямой и координат нормального вектора другой. Одна прямая должна быть задана каноническим или параметрическим уравнением, а другая представлена в виде общего уравнения прямой, уравнением в отрезках или уравнением с угловым коэффициентом.

Источник

Adblock
detector