Что значит взаимное расположение прямых на плоскости

Прямая на плоскости – необходимые сведения

Статья рассказывает о понятии прямой на плоскости. Рассмотрим основные термины и их обозначения. Поработаем со взаимным расположением прямой и точки и двух прямых на плоскости. Поговорим об аксиомах. В итоге обсудим методы и способы задания прямой на плоскости.

Прямая на плоскости – понятие

Для начала необходимо иметь четкое представление о том, что такое плоскость. Любую поверхность чего-либо можно отнести к плоскости, только от предметов она отличается своей безграничностью. Если представить, что плоскость – это стол, то в нашем случае он не будет иметь границ, а будет бесконечно огромен.

Если карандашом дотронуться до стола, останется отметина, которую можно называть «точкой». Таким образом, получим представление о точке на плоскости.

Рассмотрим понятие прямой линии на плоскости. Если провести прямую на листе, то она отобразится на нем с ограниченной длиной. Мы получили не всю прямую, а только ее часть, так как на самом деле она не имеет конца, как и плоскость. Поэтому изображение прямых и плоскостей в тетради формальное.

Взаимное расположение прямой и точки

На каждой прямой и в каждой плоскости могут быть отмечены точки.

Для точки и прямой известны только два варианта расположения: точка на прямой, иначе говоря, что прямая проходит через нее, или точка не на прямой, то есть прямая не проходит через нее.

Через любые две точки, находящиеся в любых плоскостях, существует единственная прямая, которая проходит через них.

image004

Прямая, расположенная на плоскости, имеет большое количество точек. Отсюда исходит аксиома:

Если две точки прямой лежат в плоскости, то и все остальные точки данной прямой принадлежат плоскости.

Множество точек, находящееся между двумя заданными, называют отрезком прямой. Он имеет начало и конец. Введено обозначение двумя буквами.

Точка делит прямую на две части, называемые лучами. Имеем аксиому:

Взаимное расположение прямых на плоскости

Расположение прямых на плоскости может принимать вид двух состояний.

Две прямые на плоскости могут совпадать.

Такая возможность появляется, когда прямые имеют общие точки. Исходя из аксиомы, написанной выше, имеем, что через две точки проходит прямая и только одна. Значит, что при прохождении 2 прямых через заданные 2 точки, они совпадают.

Две прямые на плоскости могут пересекаться.

image011

Две прямые на плоскости могут быть параллельны.

image013

Прямая на плоскости рассматривается вместе с векторами. Особое значение придается нулевым векторам, которые лежат на данной прямой или на любой из параллельных прямых, имеют название направляющие векторы прямой. Рассмотрим рисунок, расположенный ниже.

image014

Ненулевые векторы, расположенные на прямых, перпендикулярных данной, иначе называют нормальными векторами прямой. Подробно имеется описание в статье нормальный вектор прямой на плоскости. Рассмотрим рисунок ниже.

image015

Если на плоскости даны 3 линии, их расположение может быть самое разное. Есть несколько вариантов их расположения: пересечение всех, параллельность или наличие разных точек пересечения. На рисунке показано перпендикулярное пересечение двух прямых относительно одной.

Для этого приводим необходимы факторы, доказывающие их взаимное расположение:

Рассмотрим это на рисунках.

image016

Способы задания прямой на плоскости

Прямая на плоскости может быть задана несколькими способами. Все зависит от условия задачи и на чем будет основано ее решение. Эти знания способны помочь для практического расположения прямых.

Прямая задается при помощи указанных двух точек, расположенных в плоскости.

Читайте также:  Чем разбавить клей момент столяр

Из рассмотренной аксиомы следует, что через две точки можно провести прямую и притом только одну единственную. Когда прямоугольная система координат указывает координаты двух несовпадающих точек, тогда можно зафиксировать уравнение прямой, проходящей через две заданные точки. Рассмотрим рисунок, где имеем прямую, проходящую через две точки. image017

Прямая может быть задана через точку и прямую, которой она параллельна.

Данный способ имеет место на существование, так как через точку можно провести прямую, параллельную заданной, причем, только одну. Доказательство известно еще из школьного курса по геометрии.

Если прямая задана относительно декартовой системы координат, тогда возможно составление уравнения прямой, проходящей через заданную точку параллельно заданной прямой. Рассмотрим принцип задания прямой на плоскости.

image018

Прямая задается через указанную точку и направляющий вектор.

Когда прямая задается в прямоугольной системе координат, есть возможность составления канонического и параметрического уравнений на плоскости. Рассмотрим на рисунке расположение прямой при наличии направляющего вектора.

image019

Четвертым пунктом задания прямой имеет смысл, когда указана точка, через которую ее следует начертить, и прямая, перпендикулярная ей. Из аксиомы имеем:

Через заданную точку, расположенную на плоскости, пройдет только одна прямая, перпендикулярная заданной.

image020 yIK1LdF

И последний пункт, относящийся к заданию прямой на плоскости, это при указанной точке, через которую проходит прямая, и при наличии нормального вектора прямой. При известных координатах точки, которая расположена на заданной прямой, и координатах нормального вектора есть возможность записывания общего уравнения прямой.

Источник

Взаимное расположение прямых на плоскости. Угол между прямыми на плоскости. Расстояние от точки до прямой на плоскости

15025341501mvegg

ПРЯМАЯ НА ПЛОСКОСТИ

Взаимное расположение прямых на плоскости. Угол между прямыми на плоскости. Расстояние от точки до прямой на плоскости

Показать, при каких условиях прямые на плоскости параллельны, пересекаются, совпадают. Рассмотреть случаи, когда прямые заданы каноническими, общими или уравнениями с угловым коэффициентом. Научить находить косинус угла между пересекающимися прямыми и координаты точки их пересечения. Научить находить расстояние от точки до прямой на плоскости и расстояние между параллельными прямыми.

1) Школьники должны знать:

− условия, при которых прямые пересекаются, параллельны, совпадают, в случаях, если прямые заданы общими уравнениями, каноническими, уравнениями с угловым коэффициентом;

− условия, при которых прямые перпендикулярны;

− формулу для нахождения расстояния от точки до прямой на плоскости;

− формулу для нахождения косинуса угла между пересекающимися прямыми в случаях, если прямые заданы общими уравнениями, каноническими, уравнениями с угловым коэффициентом.

2) Школьники должны уметь:

− выяснять взаимное расположение прямых на плоскости;

− находить угол между прямыми на плоскости;

− находить расстояние от точки до прямой на плоскости;

− находить расстояние между параллельными прямыми на плоскости.

Взаимное расположение прямых на плоскости

Прямые на плоскости могут совпадать, пересекаться или быть параллельными.

1.Пусть на плоскости заданы общими уравнениями две прямые L1 и L2:

где image004 73и image005 63– нормальные векторы прямых L1 и L2, соответственно.

− нормальные векторы прямых коллинеарны, а значит, их координаты пропорциональны;

− точка, лежащая на первой прямой, лежит также и на второй прямой

image006 59.

б) параллельны, если

− нормальные векторы прямых коллинеарны, а значит, их координаты пропорциональны;

− точка, лежащая на первой прямой, не лежит на второй прямой.

Читайте также:  Чему меня учит книга

image007 58

image008 55.

в) пересекаются, если нормальные векторы прямых не коллинеарны, а значит, их координаты не пропорциональны, т. е.

image009 50.

image010 49

2.Пусть на плоскости заданы прямые L1 и L2 каноническими уравнениями:

image011 45

image012 45

− направляющие векторы прямых коллинеарны, а значит, их координаты пропорциональны;

− точка, лежащая на первой прямой, лежит также и на второй прямой

image013 43и image014 40.

б) параллельны, если

− направляющие векторы прямых коллинеарны, а значит, их координаты пропорциональны;

− точка, лежащая на первой прямой, не лежит на второй прямой.

image015 36image016 32

image013 43и image017 28.

в) пересекаются, если направляющие векторы прямых не коллинеарны, а значит, их координаты не пропорциональны, т. е.

image018 26

image019 26image020 22

3.Если прямые L1 и L2 заданы уравнениями с угловым коэффициентом

а) совпадают, если k1 = k2 и b1 = b2;

б) параллельны, если k1 = k2 и b1 ¹ b2;

image021 19image022 20

в) пересекаются, если k1 ¹ k2.

image023 20image022 20

Угол между прямыми на плоскости

Углом между двумя пересекающимися прямыми называется наименьший из углов, образованных при пересечении прямых.

1.Пусть на плоскости заданы прямые L1 и L2 общими уравнениями:

image024 20image025 20

Тогда косинус наименьшего угла между прямыми L1 и L2 на плоскости равен модулю косинуса угла между нормальными векторами этих прямых:

image026 17

В случае если прямые L1 и L2 перпендикулярны, их нормальные векторы также перпендикулярны, а значит, скалярное произведение нормальных векторов должно быть равно нулю, т. е. image027 16.

2.Пусть прямые L1 и L2 заданы каноническими уравнениями:

image011 45

image012 45

image028 15image025 20

Тогда косинус наименьшего угла между прямыми L1 и L2 равен модулю косинуса угла между направляющими векторами этих прямых:

image029 16

2. Пусть прямые L1 и L2 заданы уравнениями с угловым коэффициентом

image030 17image031 13

Тогда тангенс наименьшего угла между прямыми L1 и L2 можно найти по формуле:

image032 15,

где k1 и k2 – угловые коэффициенты прямых L1 и L2.

Очевидно, что две прямые будут параллельны, если их угловые коэффициенты будут равны.

Итак, условие параллельности двух прямых:

Если две прямые перпендикулярны, т. е. угол φ = p/2, мы получим

Это будет иметь место, когда

Итак, условие перпендикулярности двух прямых:

Расстояние от точки до прямой на плоскости

Расстояние от точки до прямой, не содержащей эту точку, есть длина перпендикуляра, проведенного из этой точки на прямую.

Расстояние от точки до прямой можно вычислить:

1) Как длину отрезка перпендикуляра, если удается включить этот отрезок в некоторый треугольник в качестве одной из высот;

2) Используя координатно – векторный метод.

image033 14

Пусть на плоскости заданы прямая L и точка M, не принадлежащая этой прямой

image034 13

расстояние от точки М0(x0, y0) до прямой L.

Замечание. Расстояние между двумя параллельными прямыми на плоскости можно найти по последней формуле, если находить расстояние от любой точки, принадлежащей одной прямой, до другой прямой.

Даны координаты точек A(4, 1), B(2, −1), C(−3, 5). Найти угол между медианой и высотой, проведенными из вершины A.

image035 11image036 10

Напишем уравнение высоты AH. Для любой точки M(x, y), лежащей на прямой AH, вектор image037 11перпендикулярен вектору image038 12, а значит, скалярное произведение этих векторов должно быть равно нулю, т. е. image039 10.

image040 10и image041 9,

image042 7

image043 9

Итак, уравнение высоты AH:

image044 10

Напишем уравнение медианы, проведенной из вершины A. Найдем координаты точки D. Точка D − середина отрезка BC, значит, ее координаты можно найти как среднее арифметическое координат точек B и C. Координаты точек B(2, −1) и C(−3, 5), тогда координаты точки D:

image045 7

Для любой точки N(x, y), лежащей на медиане AD, вектор image046 7коллинеарен вектору image047 5, а значит, координаты этих векторов должны быть пропорциональны. Найдем координаты векторов image047 5и image046 7:

image048 4

image049 4

Запишем условие пропорциональности координат:

Читайте также:  Что делать если часто хочется есть

image050 5(умножим на (1/2));

image051 3

По свойству пропорций получим:

image052 4.

Получили общее уравнение медианы AD:

image053 3.

Косинус наименьшего угла между прямыми равен модулю косинуса угла между нормальными векторами этих прямых.

Уравнение прямой AH: image044 10Тогда нормальный вектор этой прямой − image054 3. Уравнение прямой AD: image053 3. Тогда нормальный вектор этой прямой − image055 4.

image056 4

image057 5.

Ответ: image058 4.

Даны координаты точек A(4, 1), B(2, −1), C(−3, 5). Найти расстояние от точки A до прямой BC.

image059 4image036 10

Напишем уравнение прямой BC. Для любой точки N(x, y), лежащей на прямой BC, вектор image060 3коллинеарен вектору image061 4, а значит, координаты этих векторов должны быть пропорциональны:

image062 4.

Перемножив по свойству пропорций, перейдем к общему уравнению прямой:

image063 3

Тогда общее уравнение прямой BC:

image064 3.

Точка A(4, 1) image065 3BC. Расстояние от точки до прямой на плоскости можно найти по формуле:

image066 2где image067 2.

image068 2.

Ответ: расстояние от точки A до прямой BC равно image069 2.

Выяснить взаимное расположение прямых L1 и L2. Если прямые пересекаются, то найти угол между ними и координаты точки их пересечения, а если параллельны, то найти расстояние между ними:

L1: image070 3;

L2: image071 1;

Запишем координаты нормальных векторов прямых L1 и L2:

L1: image070 3, тогда image072 0– нормальный вектор прямой L1;

L2: image071 1, тогда image073 1– нормальный вектор прямой L2.

Найдем отношение координат нормальных векторов прямых:

image074 1.

Так как координаты нормальных векторов пропорциональны, то векторы image075 1и image076 1коллинеарны, а значит, прямые L1, и L2 либо параллельны, либо совпадают.

Прямые параллельны так как

image077 1.

Расстояние между прямыми найдем, как расстояние от точки М1, лежащей на прямой L1, до прямой L2 по формуле:

image078 1где image079 2.

Найдем координаты точки M1, принадлежащей прямой L1. Для этого одну из координат, например y0, примем равной нулю, тогда x0 = 4, значит, точка image080 1.

image081 1

Ответ: прямые параллельны, расстояние между ними равно image082 1.

Выяснить взаимное расположение прямых L1 и L2. Если прямые пересекаются, то найти угол между ними и координаты точки их пересечения, а если параллельны, то найти расстояние между ними:

image083 1

image084 1

Найдем направляющие векторы прямых L1 и L2:

image085 2

image086 1,

то координаты направляющих векторов не пропорциональны. Следовательно, прямые L1 и L2 пересекаются.

Косинус наименьшего угла между прямыми равен модулю косинуса угла между направляющими векторами этих прямых.

image087 2image025 20

image088 1

image089 2

Найдем координаты точки пересечения прямых L1 и L2. Для этого получим общие уравнения этих прямых.

image090 1

image091 1

Пусть точка М (x0, y0) − точка пересечения прямых L1 и L2. Тогда координаты точки М должны удовлетворять обоим уравнениям. Решим систему уравнений:

image092 1image093 1

Следовательно, точка image094 2− точка пересечения прямых L1 и L2.

Ответ: прямые пересекаются, image095 2, точка пересечения прямых − точка image094 2.

Задачи для усвоения пройденного материала.

1. Найти расстояние от точки А(−4, 1) до прямой, проходящей через точки B(1, −1), C(1, 5).

2. Выяснить взаимное расположение прямых image096 2и image098 1.

3. Найти точку пересечения медиан треугольника, вершинами которого являются точки image099 1

4. Найти точку пересечения высот треугольника, вершинами которого являются точки image099 1

5. Написать уравнение прямой, проходящей через точку image100 1и составляющей угол 450 с прямой image101 0.

6. Найти угол между прямыми image102 0иimage103 0

1. При каких значениях параметров прямые image104и image105параллельны? совпадают? пересекаются?

2. При каких значениях параметров прямые image106и image107параллельны? совпадают? пересекаются?

3. При каких значениях параметров прямые image108и image109параллельны? совпадают? пересекаются?

4. Как найти угол между пересекающимися прямыми,?

5. Как найти координаты точки пересечения прямых?

6. Как найти расстояние между параллельными прямыми?

7. При каких значениях параметров прямые image110и image111параллельны? совпадают? пересекаются?

Источник

Adblock
detector