Что значит взаимное расположение прямых

Прямая на плоскости – необходимые сведения

Статья рассказывает о понятии прямой на плоскости. Рассмотрим основные термины и их обозначения. Поработаем со взаимным расположением прямой и точки и двух прямых на плоскости. Поговорим об аксиомах. В итоге обсудим методы и способы задания прямой на плоскости.

Прямая на плоскости – понятие

Для начала необходимо иметь четкое представление о том, что такое плоскость. Любую поверхность чего-либо можно отнести к плоскости, только от предметов она отличается своей безграничностью. Если представить, что плоскость – это стол, то в нашем случае он не будет иметь границ, а будет бесконечно огромен.

Если карандашом дотронуться до стола, останется отметина, которую можно называть «точкой». Таким образом, получим представление о точке на плоскости.

Рассмотрим понятие прямой линии на плоскости. Если провести прямую на листе, то она отобразится на нем с ограниченной длиной. Мы получили не всю прямую, а только ее часть, так как на самом деле она не имеет конца, как и плоскость. Поэтому изображение прямых и плоскостей в тетради формальное.

Взаимное расположение прямой и точки

На каждой прямой и в каждой плоскости могут быть отмечены точки.

Для точки и прямой известны только два варианта расположения: точка на прямой, иначе говоря, что прямая проходит через нее, или точка не на прямой, то есть прямая не проходит через нее.

Через любые две точки, находящиеся в любых плоскостях, существует единственная прямая, которая проходит через них.

image004

Прямая, расположенная на плоскости, имеет большое количество точек. Отсюда исходит аксиома:

Если две точки прямой лежат в плоскости, то и все остальные точки данной прямой принадлежат плоскости.

Множество точек, находящееся между двумя заданными, называют отрезком прямой. Он имеет начало и конец. Введено обозначение двумя буквами.

Точка делит прямую на две части, называемые лучами. Имеем аксиому:

Взаимное расположение прямых на плоскости

Расположение прямых на плоскости может принимать вид двух состояний.

Две прямые на плоскости могут совпадать.

Такая возможность появляется, когда прямые имеют общие точки. Исходя из аксиомы, написанной выше, имеем, что через две точки проходит прямая и только одна. Значит, что при прохождении 2 прямых через заданные 2 точки, они совпадают.

Две прямые на плоскости могут пересекаться.

image011

Две прямые на плоскости могут быть параллельны.

image013

Прямая на плоскости рассматривается вместе с векторами. Особое значение придается нулевым векторам, которые лежат на данной прямой или на любой из параллельных прямых, имеют название направляющие векторы прямой. Рассмотрим рисунок, расположенный ниже.

image014

Ненулевые векторы, расположенные на прямых, перпендикулярных данной, иначе называют нормальными векторами прямой. Подробно имеется описание в статье нормальный вектор прямой на плоскости. Рассмотрим рисунок ниже.

image015

Если на плоскости даны 3 линии, их расположение может быть самое разное. Есть несколько вариантов их расположения: пересечение всех, параллельность или наличие разных точек пересечения. На рисунке показано перпендикулярное пересечение двух прямых относительно одной.

Для этого приводим необходимы факторы, доказывающие их взаимное расположение:

Рассмотрим это на рисунках.

image016

Способы задания прямой на плоскости

Прямая на плоскости может быть задана несколькими способами. Все зависит от условия задачи и на чем будет основано ее решение. Эти знания способны помочь для практического расположения прямых.

Прямая задается при помощи указанных двух точек, расположенных в плоскости.

Из рассмотренной аксиомы следует, что через две точки можно провести прямую и притом только одну единственную. Когда прямоугольная система координат указывает координаты двух несовпадающих точек, тогда можно зафиксировать уравнение прямой, проходящей через две заданные точки. Рассмотрим рисунок, где имеем прямую, проходящую через две точки. image017

Прямая может быть задана через точку и прямую, которой она параллельна.

Данный способ имеет место на существование, так как через точку можно провести прямую, параллельную заданной, причем, только одну. Доказательство известно еще из школьного курса по геометрии.

Читайте также:  Что делать если чихает кошка и слезятся глаза

Если прямая задана относительно декартовой системы координат, тогда возможно составление уравнения прямой, проходящей через заданную точку параллельно заданной прямой. Рассмотрим принцип задания прямой на плоскости.

image018

Прямая задается через указанную точку и направляющий вектор.

Когда прямая задается в прямоугольной системе координат, есть возможность составления канонического и параметрического уравнений на плоскости. Рассмотрим на рисунке расположение прямой при наличии направляющего вектора.

image019

Четвертым пунктом задания прямой имеет смысл, когда указана точка, через которую ее следует начертить, и прямая, перпендикулярная ей. Из аксиомы имеем:

Через заданную точку, расположенную на плоскости, пройдет только одна прямая, перпендикулярная заданной.

image020 yIK1LdF

И последний пункт, относящийся к заданию прямой на плоскости, это при указанной точке, через которую проходит прямая, и при наличии нормального вектора прямой. При известных координатах точки, которая расположена на заданной прямой, и координатах нормального вектора есть возможность записывания общего уравнения прямой.

Источник

Научная электронная библиотека

file 56c315c281648

Пиралова О. Ф., Ведякин Ф. Ф.,

3.4. Взаимное положение прямых

Две прямые в пространстве могут пересекаться, скрещиваться и могут быть параллельны.

1. Пересекающиеся прямые

Пересекающимися прямыми называются такие прямые, которые имеют одну общую точку.

Из инвариантного свойства 5 следует, что проекция точки пересечения проекций прямых а и b есть точка пересечения этих прямых (рис. 3.4).

image052.

Рис. 3.4. Пересекающиеся прямые

2. Параллельные прямые

На рис. 3.5 изображены параллельные прямые – прямые, пересекающиеся в несобственной точке (прямые, лежащие в одной плоскости и пересекающиеся в бесконечно удаленной точке).

Из инвариантного свойства 6 следует, что проекции параллельных прямых а и b параллельны.

Скрещивающиеся прямые – это прямые, не лежащие в одной плоскости, это прямые не имеющие ни одной общей точки.

На комплексном чертеже (рис. 3.6) точки пересечения проекций этих прямых не лежат на одном перпендикуляре к оси Х (в отличие от пересекающихся прямых, см. рис. 3.4).

image053.

Рис. 3.5. Изображение параллельных прямых

image054.

Источник

Геометрия. 10 класс

Конспект урока

Геометрия, 10 класс

Урок №5. Взаимное расположение прямых в пространстве

Перечень вопросов, рассматриваемых в теме

Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости.

Два отрезка называются параллельными, если они лежат на паралельных прямых.

Открытый электронный ресурс:

Теоретический материал для самостоятельного изучения

Мы уже знаем, что прямы в пространстве могут располагаться параллельно или пересекаться. Существует еще один вид- скрещивающиеся прямые. С ним мы мимолетно познакомились на предыдущем уроке. А сегодня нам предстоит разобраться с этой темой более подробно.

Определение. Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости. (рис. 1)

d2aa1590 e551 43d6 acfe e943c61efeb8

Рисунок 1 – скрещивающиеся прямые

На прошлом уроке в качестве наглядного примера нами был приведен куб.

Сегодня предлагаем вам обратить внимание на окружающую вас обстановку и найти в ней скрещивающиеся прямые.

Примеры скрещивающихся прямых вокруг нас:

Одна дорога проходит по эстакаде, а другая под эстакадой

5e5c33b0 ddee 459f 96b5 8ead40fa9785

f1494e59 af89 49ff b056 e1c469fff400

Горизонтальные линии крыши и вертикальные линии стен

bf2e8c08 6cbb 4d4a a918 f5e35760d84e

Разберем и докажем теорему, которая выражает признак скрещивающихся прямых.

Теорема. Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся (не лежат в одной плоскости).

Доказательство.
Рассмотрим прямую AB лежащую в плоскости и прямую CD, которая пересекает плоскoсть в точке D, не лежащей на прямой AB (рис. 2).

65b569a1 6f20 4e90 aaef bd9169d431c3

Рисунок 2 – скрещивающиеся прямые АВ и СD

Итак, возможны три случая расположения прямых в пространстве:

f6fc4049 aaff 4272 ad1a 583d6722b0c9

084a62f5 8e46 4907 985a 0bff6702e5bd

4dc94b0c 3e64 426a babd 9d16b9d2f82f

Разберем и докажем еще одну теорему о скрещивающихся прямых.

Теорема. Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.

Читайте также:  Что делать при гипертонусе матки при беременности во втором триместре

Доказательство
Рассмотрим скрещивающиеся прямые AB и CD.(рис. 3)

1. Через точку D можно провести прямую DE параллельную AB.
2. Через пересекающиеся прямые CD и DE можно провести плоскость α
3. Так как прямая АB не лежит в этой плоскости и параллельна прямой DE, то она параллельна плоскости.

4. Эта плоскость единственная, так как любая другая плоскость, проходящая через CD, будет пересекаться с DE и AB, которая ей параллельна.
Теорема доказана.

6fb7c724 cb86 4f50 b880 0515d4a76e8f

Рисунок 3 – прямые АВ, СD, DЕ

Любая прямая, например ОО1, рассекает плоскость на две полуплоскости. Если лучи ОА и О1А1 параллельны и лежат в одной полуплоскости, то они называются сонаправленными.

Лучи О1А1 и ОА не являются сонаправленными. Они параллельны, но не лежат в одной полуплоскости. (рис. 4)

c8499712 f609 4034 b6ff 3228605b79be

Рисунок 4 – сонаправленные лучи

Теорема.Если стороны двух углов соответственно сонаправленны, то такие углы равны. (рис. 5)

Доказательство:

при доказательстве ограничимся случаем, когда углы лежат в разных плоскостях.

Отметим на сторонах угла O произвольные точки A и B.

На соответствующих сторонах угла O1 отложим отрезки OA1 и O₁B₁ равные соответственно ОA и OB.

2. В плоскости рассмотрим четырехугольник OAA1O1.

Так как противолежащие стороны OA и O1A1 этого четырехугольника равны и параллельны по условию, то этот четырехугольник– параллелограмм и, следовательно, равны и параллельны стороны AA1 и OO1.

3. В плоскости, аналогично можно доказать, что OBB1O1 параллелограмм, поэтому равны и параллельны стороны ВВ1 и OO1.

4. Если две отрезка AA1 и BB1 равны параллельны третьему отрезку OO1, значит, они равны и параллельны, т. е. АА1||BB1 и AA1 = BB1.

По определению четырехугольник АВВ1А1 – параллелограмм и из этого получаем АВ=А1В1.

5.Из выше построенного и доказанного АВ=А1В1, ОA =O1A1 и OB =O1B1 следует, что треугольники AOB и A1 O1 B1. равны по трем сторонам, и поэтому О= О1.

5f85717e 7bc6 41a6 a5c8 ac4eada6503e

Рисунок 5 – равные углы с сонаправленными сторонами

Источник

Прямая в пространстве – необходимые сведения

Статья рассказывает о взаимном расположении линий в пространстве. Будут рассмотрены основные способы задания прямой с приведением примеров и наглядных рисунков.

Прямая в пространстве – понятие

Раздел о прямой на плоскости дает представление о течки и прямой. Расположение прямой в пространстве аналогично. Если мысленно отметить две точки и провести линию, соединив их, получим прямую, уходящую в бесконечность.

Точки, прямые и отрезки в пространстве обозначаются аналогично расположению в плоскости.

Если прямая располагается на плоскости в пространстве, тогда это можно подкрепить аксиомами:

Имеет место аксиома, благодаря которой можно рассматривать прямую в пространстве в качестве двух пересеченных плоскостей:

Если две плоскости имеют общую точку, тогда имеют общую прямую, на которой лежат все общие точки этих плоскостей. Показано на рисунке, приведенном ниже.

image001 w6I0zjp

Взаимное расположение прямых в пространстве

Две прямые, расположенные в пространстве, могут пересекаться в случае наличия одной общей точки.

Данный случай говорит о том, что прямые располагаются на плоскости трехмерного пространства. Когда прямые, расположенные в пространстве, пересекаются, то переходим к определению угла между пересекающимися прямыми.

image002 eOA5O5K

Две прямые пространства параллельны в том случае, если расположены в одной плоскости без общих точек.

Рассмотрим ниже расположение параллельных прямых.

image003

После рассмотрения определения параллельных прямых, расположенных в пространстве, необходимо добавить о направляющих векторах прямой.

Ненулевой вектор, который располагается на прямой или на параллельной ему прямой, называют направляющим вектором данной прямой.

Если по условию дана линия в пространстве, то он используется для решения задач.

image004 SkoFJ3a

Две прямые пространства могут быть скрещивающимися.

Две прямые называют скрещивающимися, при условии, что они лежат в одной плоскости.

Это тесно связано с определением угла между скрещивающимися прямыми.

Читайте также:  Что делать с лилиями осенью на даче для цветения весной и летом

image005

Особым случаем считается пересечение или скрещивание прямых под прямым углом в пространстве. Их называют перпендикулярными. Рассмотрим на рисунке.

image006

Способы задания прямой в пространстве

Для того, чтобы расположить прямую в пространстве, существует несколько методов.

Из аксиомы для двух точек плоскости имеем, что через них может быть задана единственная прямая. При расположении двух точек в пространстве также задается только одна прямая, проходящая через них.

При прямоугольной системе координат прямая задается с помощью координат точек, которые располагаются в трехмерном пространстве. Это и позволяет составить уравнение прямой, проходящей через две заданные точки.

image007

Еще один способ задания прямой – это теорема. Через любую точку пространства, не лежащую на данной прямой, может проходить прямая, параллельная данной, причем только одна.

Отсюда следует, что при задавании прямой и точки, не лежащей на ней, сможем определить прямую, которая параллельна заданной и проходит через указанную точку.

image008

Есть способ, когда можно указать точку, направляющий вектор и прямую, которая проходит через нее. При задании прямой относительно прямоугольной систему координат, можно говорить о канонических и параметрических уравнениях прямой в пространстве.

image009

Немаловажный способ задания прямой – это способ, основанный на аксиоме: если две плоскости имеют общую точку, тогда имеют общую прямую, где располагаются общие точки заданных плоскостей. При задании двух пересекающихся плоскостей можно определить прямую пространства.

image010

Если задана плоскость и нележащая в ней точка, тогда существует прямая, проходящая через нее и перпендикулярная заданной плоскости, причем только одна. Этот способ задания базируется на теореме. Получаем, что для определения прямой достаточно задать плоскость, перпендикулярную ей, с точкой, через которую проходит заданная прямая.

В случае, если прямая задается относительно введенной прямоугольной системы координат, то следует укрепить знания из статьиуравнения прямой, проходящей через заданную точку перпендикулярно в заданной плоскости.Рассмотрим задание прямой, используя точку, через которую она пройдет, и плоскости, которая располагается перпендикулярно относительно заданной прямой.

Источник

Взаимное расположение прямых в пространстве. Свойства параллельных прямых. Признаки скрещивающихся прямых

Возможны четыре различных случая расположения двух прямых в пространстве:

– прямые скрещиваются, т. е. не лежат в одной плоскости;

– прямые пересекаются, т. е. лежат в одной плоскости и имеют одну общую точку;

– прямые параллельны, т. е. лежат в одной плоскости и не пересекаются;

Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

\(a || b\) (прямая а параллельна прямой b)

Теорема о параллельных прямых. Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.

Два отрезка называются параллельными, если они лежат на параллельных прямых.

Свойства параллельных прямых

Две прямые называются скрещивающимися, если они не лежат в одной плоскости.

Признак скрещивающихся прямых. Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.

27.

Точки А, В, С и D – середины ребер прямоугольного параллелепипеда. Найдите параллельные прямые.

21.

1426052283.7527

Точки А и D – середины ребер параллелепипеда. Выберите верные высказывания.

1) Прямые СD и MN скрещивающиеся.

2) Прямые АВ и MN лежат в одной плоскости.

3) Прямые СD и MN пересекаются.

4) Прямые АВ и СD скрещивающиеся.

28.

Каким может быть взаимное расположение прямых а и b, если через прямую а можно провести плоскость, параллельную прямой b?

Две прямые в пространстве называются параллельными, если

Прямая а, параллельная прямой b, пересекает плоскость α. Прямая с параллельна прямой b, тогда

Каким может быть взаимное расположение двух прямых, если обе они параллельны одной плоскости?

Две прямые пересекаются. Что это значит?

Две прямые называются скрещивающимися, если

Источник

Adblock
detector