Что значит взаимное расположение точек в геометрии

Геометрия 7 класс.
Точка, прямая и отрезок

Казалось бы, что таким простым понятиям, как «точка» или «прямая», которые мы повседневно используем в жизни, крайне просто дать определения. Но на практике оказалось, что это не так.

Существует множество определений, которые давали знаменитые математики терминам «точка» и «прямая». За многие века ученые так и не пришли к единому определению.

Мы не будем приводить все определения точки и прямой. Остановимся на объяснениях, которые, на наш взгляд, наиболее простым образом их описывают.

Точка — элементарная фигура, не имеющая частей.

Прямая состоит из множества точек и простирается бесконечно в обе стороны.

straight line and points

То есть выражаясь геометрическими обозначениями, информацию о расположении прямой и точек на рисунке выше можно записать так:

Как обозначить прямую

Прямую обычно обозначают одной маленькой латинской буквой.

Прямую, на которой отмечены две точки, иногда обозначают по названиям этих точек большими латинскими точками.

Задача № 1 из учебника Атанасян 7-9 класс

Решение задачи

straight line

straight line named a

straight line named a with points

points outside line

Опишем взаимное расположение точек и прямой.

Как обозначается пересечение прямых

lines do not intersect

Хотя на чертеже не видно, но прямые a и c тоже пересекаются (это становится ясно, если мысленно продолжить вниз прямые a и с ).

relative position lines no points

Прямые e и f не имеют общей точки — т.е. они не пересекаются.

Взаимное расположение прямой и точек

line through point

Через одну точку (·)A можно провести сколько угодно прямых.

Через две точки (·)A и (·)B можно провести только одну прямую.

Сколько общих точек имеют две прямые

Две прямые либо имеют только одну общую точку, либо не имеют общих точек.

Докажем утверждение выше. Для этого рассмотрим все возможные случаи расположения двух прямых.

Первый случай расположения прямых

relative position lines no points

На рисунке выше мы видим, что у прямых f и e нет общих точек, т.к. эти прямые не пересекаются.

Второй случай расположения прямых

relative position lines one common point

Третий случай расположения прямых

one line through 2 points

Вывод: две прямые либо имеют только одну общую точку, либо не имеют общих точек.

Задача № 3 из учебника Атанасян 7-9 класс

Проведите три прямые так, чтобы каждые две из них пересекались. Обозначьте все точки пересечения этих прямых. Сколько получилось точек? Рассмотрите все возможные случаи.

Решение задачи

Проведём две прямые a и b так, чтобы эти две прямые пересекались, и обозначим точку пересечения.

intersect two lines

Как мы видим, точка пересечения только одна. Мы можем провести третью прямую так, чтобы она тоже проходила через эту точку пересечения.

intersect three lines

intersect three lines more points

Мы убедились, что возможны оба варианта. Поэтому в ответе запишем их оба.

Ответ: точек пересечения получается одна или три.

Что такое отрезок

Отрезок — часть прямой, ограниченная двумя точками.

line segment

line segment without tails

В отличии от прямой любой отрезок можно измерить. Т.е. каждый отрезок имеет длину.

Источник

На уроках математики в предыдущих классах и в главе 1 вы уже познакомились со свойствами некоторых геометрических фигур. Теперь вы приступаете к систематическому изучению геометрии.

Как уже отмечалось ранее, основными геометрическими фигурами являются точка, прямая, плоскость. Представление об этих фигурах вы уже имеете.

Например, туго натянутая нить дает представление о части прямой, страница книги или грань прямоугольного параллелепипеда — о части плоскости (рис. 22, а, б, в).
101765

Если точка А принадлежит прямой b, то говорят, что прямая b проходит через точку А. Это записывают так: А 101774

Если точка А не принадлежит прямой b, то говорят, что прямая b не проходит через точку А. В этом случае используется запись А 101779 b (читают: «Точка А не принадлежит прямой b», «Точка А не лежит на прямой b» или «Прямая b не проходит через точку А»).

Читайте также:  Чем сделать круглое отверстие в фанере

Например, на рисунке 23, а изображены точка С — вершина квадрата и точка Т, не лежащие на прямой l (С 101797 l, Т 101798 l), проходящей через вершины А и D квадрата (А 101819 l, D 101820 l). На рисунке 23, б, в изображена прямая l, проходящая через вершины О и F куба (O 101819 l, F 101820 l).
101826

В курсе геометрии понятия « точка», « прямая» и «плоскость» относятся к основным понятиям и принимаются без определений, другие геометрические понятия определяются через основные. К основным понятиям относятся также понятия «принадлежать» и «лежать между». Свойства геометрических фигур устанавливаются путем логических рассуждений на основе некоторых утверждений (аксиом), которые принимаются без доказательств. Аксиомы выражают основные свойства геометрических фигур, которые соответствуют формам и отношениям, наблюдаемым в окружающем пространстве.

Утверждение, которое обосновывается путем логических рассуждений, называется теоремой, а само обоснование — доказательством. Доказать теорему — это значит путем рассуждений обосновать, что она следует из некоторых аксиом или ранее доказанных теорем.

Взаимное расположение точек и прямых на плоскости характеризуют следующие основные свойства (аксиомы):

Прямая, которая проходит через точки А и В, обозначается АВ или ВА.

Например, на рисунке 24, а изображена прямая ОF, которая проходит через точки О и F, а на рисунке 24, б, в показана прямая АС, которая проходит через вершины А и С куба и лежит в той же плоскости, что и грань АВСD куба.

101839

1 Здесь и в дальнейшем, говоря «две точки», «две прямые» и т. д., будем считать, что эти точки, прямые и т. д. различны.

Пересекающиеся и параллельные прямые

Рассмотрим понятия пересекающихся и параллельных прямых.

Определение. Две прямые называются пересекающимися, если они имеют одну общую точку.

Если прямые а и b пересекаются в точке О, то это обозначается так: О = а 101842 b (читают: «Прямые а и b пересекаются в точке О»).

Например, на рисунке 25, а изображены прямые КЕ и TF, которые проходят через вершины прямоугольника и пересекаются в точке Р (Р =TF 101842КЕ).

На рисунке 25, B изображены прямые АС и BD, которые проходят через вершины куба и пересекаются в точке О (О = АС 101843ВD).

101844

Определение. Две прямые называются параллельными, если они лежат в одной плоскости и не пересекаются.

Параллельные прямые l1 и l2 обозначаются так: l1 101846l2 (читают: «Прямая l1 параллельна прямой l2 »).

Например, на рисунке 25, в изображены параллельные прямые ВС и АD (ВС101846АD).

Теорема. Если две прямые плоскости имеют общую точку, то она единственная.

Пусть две прямые а и b имеют общую точку О. Докажем, что других общих точек эти прямые не имеют. Допустим, что прямые а и b имеют еще одну общую точку O1. Тогда получается, что через точки O и O1 проходят две прямые а и b. Но этого быть не может, так как по аксиоме А3 через две точки проходит единственная прямая. Таким образом, наше предположение неверно, и прямые а и b имеют единственную общую точку.

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Читайте также:  Что делать когда очень хочется спать

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Взаимное расположение точки, прямых и плоскостей с примерами

Содержание:

Взаимное расположение точки и прямой:

Возможны два варианта расположения точки относительно прямой:

152073

152074

Взаимное расположение прямых

Прямые в пространстве могут занимать друг к другу одно из трех положений:

Параллельными называются прямые, лежащие в одной плоскости и не имеющие общих точек.

152082

Пересекающимися называются прямые, лежащие в одной плоскости и имеющие одну общую точку.

У пересекающихся прямых на КЧ одноименные проекции пересекаются в проекциях точки А. Причем фронтальная 152087и горизонтальная 152089проекции этой точки должны находиться на одной линии связи. 152092

Скрещивающимися называются прямые, лежащие в параллельных плоскостях и не имеющие общих точек.

152093

Если прямые скрещивающиеся, то на КЧ их одноименные проекции могут пересекаться, но точки пересечений одноименных проекций не будут лежать на одной линии связи.

На рис. 3.4 точка С принадлежит прямой b, а точка D на прямой а. Эти точки находятся на одинаковом расстоянии от фронтальной плоскости проекций.

Плоскость. Способы ее задания, положение относительно плоскостей проекций

Положение плоскости в пространстве может быть однозначно определено:

Всегда от одного способа задания плоскостей можно перейти к другому.

След плоскости – это линия пересечения заданной плоскости с одной из плоскостей проекций.

Соответственно различают горизонтальный, фронтальный и профильный следы плоскости.

152114

Плоскостью общего положения называется плоскость не параллельная и не перпендикулярная ни одной из плоскостей проекций.

Плоскостями частного положения относительно плоскостей проекций называются плоскости параллельные или перпендикулярные им.

Плоскость перпендикулярная одной из плоскостей проекций называется проецирующей плоскостью.

Существует три вида проецирующих плоскостей: горизонтально- проецирующая, фронтально-проецирующая и профильно-проецирующая плоскости. Такие плоскости вырождаются в прямую линию (след плоскости) на ту плоскость проекций, к которой они перпендикулярны.

152132

2. Фронтально-проецирующая плоскость – плоскость перпендикулярная фронтальной плоскости проекций.

152140

3. Профильно-проецирующая плоскость – плоскость, перпендикулярная профильной плоскости проекций.

152144

Плоскость, параллельная одной из плоскостей проекций, называется плоскостью уровня.

Существует три вида плоскостей уровня: горизонтальная, фронтальная и профильная плоскости уровня.

1. Горизонтальная плоскость – плоскость, параллельная горизонтальной плоскости проекций.

152153

152158

3. Профильная плоскость – плоскость, параллельная профильной плоскости проекций.

152161

Принадлежность прямой и точки плоскости

Возможны два случая расположения точки относительно плоскости: точка может принадлежать плоскости или не принадлежать ей (рис. 3.12).

Точка принадлежит плоскости, если принадлежит прямой, лежащей в этой плоскости.

Прямая принадлежит плоскости, если имеет с ней две общие точки или имеет с ней одну общую точку и параллельна другой прямой, лежащей в этой плоскости.

152169

На рис. 3.12 изображена плоскость 152171и точки D и Е. Точка D принадлежит плоскости, т. к. принадлежит прямой 152172имеющей с этой плоскостью две общие точки – 1 и А. Точка Е не принадлежит плоскости, т.к. через нее нельзя провести прямую, лежащую в данной плоскости. На рис. 3.13. показана плоскость 152175и прямая t, лежащая в этой плоскости, т.к. имеет с ней общую точку 1 и параллельна прямой..

152177

Взаимное расположение прямой и плоскости

Для прямой и плоскости возможны три случая их взаимного расположения:

Читайте также:  Что добавлять в аккумулятор при зарядке

Параллельность прямой и плоскости

Прямая параллельна плоскости, если она параллельна прямой, принадлежащей этой плоскости.

Этот признак параллельности прямой и плоскости хорошо известен из курса стереометрии.

152181

Взаимное расположение плоскостей

Плоскости по отношению друг к другу могут занимать два положения: быть параллельными или пересекаться.

Плоскости параллельны, если пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым второй плоскости

152182

Если две плоскости не параллельны, то они обязательно пересекаются и результатом их пересечения является прямая.

Для построения линии пересечения плоскостей необходимо найти две точки, одновременно принадлежащие этим плоскостям, или одну общую точку, если известно направление линии пересечения.

Направление линии пересечения известно в том случае, если:

Общая точка для двух пересекающихся плоскостей в общем случае определяется с помощью вспомогательной плоскости частного положения, также пересекающей заданные плоскости по прямой (рис. 3.12).

152184

Рассмотрим сначала частные случаи пересечение двух плоскостей:

1. Пересекаются плоскость общего положения 152186горизонтально- проецирующая плоскость 152187заданная следом.

152191

2. Пересекаются плоскости общего положения заданные следами.

153113

В этом случае следы плоскости пересекаются в пределах чертежа, следовательно, линия пересечения этих плоскостей строится по двум точкам, являющимся следами линии пересечения, которые находятся в точках пересечения одноименных следов плоскостей.

Рассмотрим общий случай пересечения плоскостей:

3. Пересекаются плоскости общего положения.

153122

153125 QaVb9D4

Определение видимости на КЧ

Для улучшения наглядности изображений, заданных на КЧ, принято видимые для наблюдателя линии показывать сплошными, а невидимые штриховыми линиями. При этом предполагается, что:

153134

Даны две пары точек:

Необходимо определить видимость точек относительно горизонтальной и фронтальной плоскостей проекций.

Если на КЧ какие-либо две проекции точек совпадают, то для наблюдателя будет видима та точка, проекция которой на КЧ находится дальше от оси проекций.

Точки А и В, С и D называются точками, конкурирующими в видимости, а сам метод определения видимости – метод конкурирующих точек.

Конкурирующими в видимости точками называются точки, лежащие на одном проецирующем луче, но принадлежащие разным геометрическим объектам.

Пересечение прямой с плоскостью

Прямая называется пересекающей плоскость, если она имеет с ней только одну общую точку. Рассмотрим различные случаи пересечения прямой и плоскости,

1. Прямая – проецирующая, плоскость – частного положения.

153167

На КЧ необходимо построить проекции точки пересечения прямой с плоскостью и определить видимость этой прямой относительно горизонтальной и фронтальной плоскостей проекций. Точка К должна одновременно принадлежать и прямой, и плоскости.

153179

153185

В данном случае фронтальная проекция точки пересечения лежит на следе плоскости 153190

Построение недостающей горизонтальной проекции точки пересечения сводится к задаче на принадлежность точки прямой:

153196

Пересечение прямой общего положения с плоскостью общего положения (первая основная позиционная задача).

В общем случае задача на пересечение прямой с плоскостью решается с помощью вспомогательной секущей плоскости, на которую накладывается ряд условий:

153212

Порядок нахождения точки пересечения прямой с плоскостью:

153235

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Adblock
detector